1,364 research outputs found

    Variation of the hopping exponent in disordered silicon MOSFETs

    Full text link
    We observe a complex change in the hopping exponent value from 1/2 to 1/3 as a function of disorder strength and electron density in a sodium-doped silicon MOSFET. The disorder was varied by applying a gate voltage and thermally drifting the ions to different positions in the oxide. The same gate was then used at low temperature to modify the carrier concentration. Magnetoconductivity measurements are compatible with a change in transport mechanisms when either the disorder or the electron density is modified suggesting a possible transition from a Mott insulator to an Anderson insulator in these systems.Comment: 6 pages, 5 figure

    A dynamic localization of 2D electrons at mesoscopic length scales

    Full text link
    We have investigated the local magneto-transport in high-quality 2D electron systems at low carrier densities. The positive magneto-resistance in perpendicular magnetic field in the strongly insulating regime has been measured to evaluate the spatial concentration of localized states within a mesoscopic region of the samples. An independent measurement of the electron density within the same region shows an unexpected correspondence between the density of electrons in the metallic regime and that of the localized states in the insulating phase. We have argued that this correspondence manifests a rigid distribution of electrons at low densities.Comment: 8 pages (incl 4 figures), double colum

    Possible zero-magnetic field fractional quantization in In0.75Ga0.25As heterostructures

    Get PDF
    In this Letter, we report a systematic study of a structure found in zero magnetic field at or near 0.2 ×(e2/h) in In0.75Ga0.25As heterostructures, where e is the fundamental unit of charge and h is Planck's constant. This structure has been observed in many samples and stays at near constant conductance despite a large range of external potential changes, the stability indicating a quantum state. We have also studied the structure in the presence of high in-plane magnetic fields and find an anisotropy which can be related to the Rashba spin–orbit interaction and agrees with a recent theory based on the formation of coherent back-scattering. A possible state with conductance at 0.25 ×(e2/h) has also been found. The quantum states described here will help with the fundamental understanding of low-dimensional electronic systems with strong spin–orbit coupling and may offer new perspectives for future applications in quantum information schemes

    Influence of parallel magnetic fields on a single-layer two-dimensional electron system with a hopping mechanism of conductivity

    Full text link
    Large positive (P) magnetoresistance (MR) has been observed in parallel magnetic fields in a single 2D layer in a delta-doped GaAs/AlGaAs heterostructure with a variable-range-hopping (VRH) mechanism of conductivity. Effect of large PMR is accompanied in strong magnetic fields by a substantial change in the character of the temperature dependence of the conductivity. This implies that spins play an important role in 2D VRH conductivity because the processes of orbital origin are not relevant to the observed effect. A possible explanation involves hopping via double occupied states in the upper Hubbard band, where the intra-state correlation of spins is important.Comment: 10 pages, 4 jpeg figure

    Unusual conductance collapse in one-dimensional quantum structures

    Full text link
    We report an unusual insulating state in one-dimensional quantum wires with a non-uniform confinement potential. The wires consist of a series of closely spaced split gates in high mobility GaAs/AlGaAs heterostructures. At certain combinations of wire widths, the conductance abruptly drops over three orders of magnitude, to zero on a linear scale. Two types of collapse are observed, one occurring in multi-subband wires in zero magnetic field and one in single subband wires in an in-plane field. The conductance of the wire in the collapse region is thermally activated with an energy of the order of 1 K. At low temperatures, the conductance shows a steep rise beyond a threshold DC source-drain voltage of order 1 mV, indicative of a gap in the density of states. Magnetic depopulation measurements show a decrease in the carrier density with lowering temperature. We discuss these results in the context of many-body effects such as charge density waves and Wigner crystallization in quantum wires.Comment: 5 pages, 5 eps figures, revte

    Spin-incoherent transport in quantum wires

    Get PDF
    When a quantum wire is weakly confined, a conductance plateau appears at e(2)/h with decreasing carrier density in zero magnetic field accompanied by a gradual suppression of the 2e(2)/h plateau. Applying an in-plane magnetic field B-parallel to does not alter the value of this quantization; however, the e(2)/h plateau weakens with increasing B-parallel to up to 9 T, and then strengthens on further increasing B-parallel to, which also restores the 2e(2)/h plateau. Our results are consistent with spin-incoherent transport in a one-dimensional wire

    Coulomb Charging Effects in an Open Quantum Dot

    Full text link
    Low-temperature transport properties of a lateral quantum dot formed by overlaying finger gates in a clean one-dimensional channel are investigated. Continuous and periodic oscillations superimposed upon ballistic conductance steps are observed, when the conductance G of the dot changes within a wide range 0<G<6e^2/h. Calculations of the electrostatics confirm that the measured periodic conductance oscillations correspond to successive change of the total charge of the dot by ee. By modelling the transport it is shown that the progression of the Coulomb oscillations into the region G>2e^2/h may be due to suppression of inter-1D-subband scattering. Fully transmitted subbands contribute to coherent background of conductance, while sequential tunneling via weakly transmitted subbands leads to Coulomb charging of the dot.Comment: 12 pages, RevTeX, 15 eps figures included, submitted to Phys. Rev.

    On the Zero-Bias Anomaly in Quantum Wires

    Full text link
    Undoped GaAs/AlGaAs heterostructures have been used to fabricate quantum wires in which the average impurity separation is greater than the device size. We compare the behavior of the Zero-Bias Anomaly against predictions from Kondo and spin polarization models. Both theories display shortcomings, the most dramatic of which are the linear electron-density dependence of the Zero-Bias Anomaly spin-splitting at fixed magnetic field B and the suppression of the Zeeman effect at pinch-off

    NMR multiple quantum coherences in quasi-one-dimensional spin systems: Comparison with ideal spin-chain dynamics

    Get PDF
    The 19F spins in a crystal of fluorapatite have often been used to experimentally approximate a one-dimensional spin system. Under suitable multi-pulse control, the nuclear spin dynamics may be modeled to first approximation by a double-quantum one-dimensional Hamiltonian, which is analytically solvable for nearest-neighbor couplings. Here, we use solid-state nuclear magnetic resonance techniques to investigate the multiple quantum coherence dynamics of fluorapatite, with an emphasis on understanding the region of validity for such a simplified picture. Using experimental, numerical, and analytical methods, we explore the effects of long-range intra-chain couplings, cross-chain couplings, as well as couplings to a spin environment, all of which tend to damp the oscillations of the multiple quantum coherence signal at sufficiently long times. Our analysis characterizes the extent to which fluorapatite can faithfully simulate a one-dimensional quantum wire.Comment: 14 pages, 11 eps color figure
    • …
    corecore